DATA SHEE

Oxygen Sensor Interface Board

- Provides the electronics necessary to power and control SST's range of zirconium dioxide (ZrO₂) sensors
- Externally triggered automatic or manual calibration. Calibration can also be initiated via an on-board push button
- Power and sensor operating LEDs
- Removable polarised screw terminals for easy wiring

Supply Voltage

Temp

Digital Output

Analogue Output

Response **Time**

BENEFITS

- Adaptive software filtering provides a fast sensor response coupled with a stable oxygen output
- High accuracy linear output
- Can be calibrated in fresh air (20.7% O₂) or in any other known O2 concentration

X TECHNICAL SPECIFICATIONS

Supply voltage $24V_{DC} \pm 10\%$

600mA max. at 24VDC Supply current

Digital output RS232

Analogue output 4—20mA; load 100—600Ω

0—10 V_{DC} ; load 10 $k\Omega$ min

Temperature limits

-10°C to +70°C Storage: -10°C to +70°C Operating: Oxygen pressure limits¹ 1-1000mbar

OUTPUT VALUES

Oxygen range (analogue output)3 0.1^2 —25% O_2 $0.1^2 - 100\% O_2$ 0.1^2 — $100\% O_2$ Oxygen range (RS232 output)

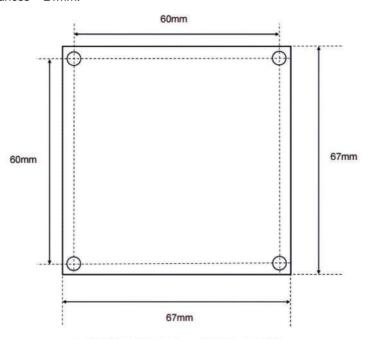
Accuracy after calibration^{4, 5} 1% O₂ Repeatability after calibration⁴ 0.5% O₂

Output resolution:

 $0-10V_{DC}$: 0.01V 4-20mA: 0.01mA RS232: 0.01% O₂

Response time (step 10—90%)

Fast response sensor connected: < 4s Standard response sensor connected: < 15s 5-10mins Initial warm up time (till stable output) Output inactive start up delay (heater warm up)

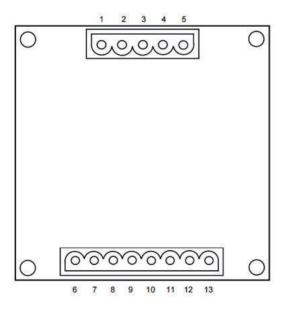


- Sensor and interface for correct barometric pressure compensation.
- Prolonged operation below 0.1% O₂ can damage the sensing element.
- Range selectable by altering the position of the jumper links on the PCB; refer to PCB Layout on page 3. Assuming barometric pressure (BP) remains constant.
- As the O_2 sensor measures the partial pressure of oxygen (PPO₂) within the measurement gas deviation in the BP from that present during calibration will cause readout errors proportional to the change, e.g. if the sensor reads 21% O_2 at 1013.25mbar and the BP increases by 1%, the sensor readout will also increase by 1% to 21.21% O₂.

Rossmann Electronic GmbH

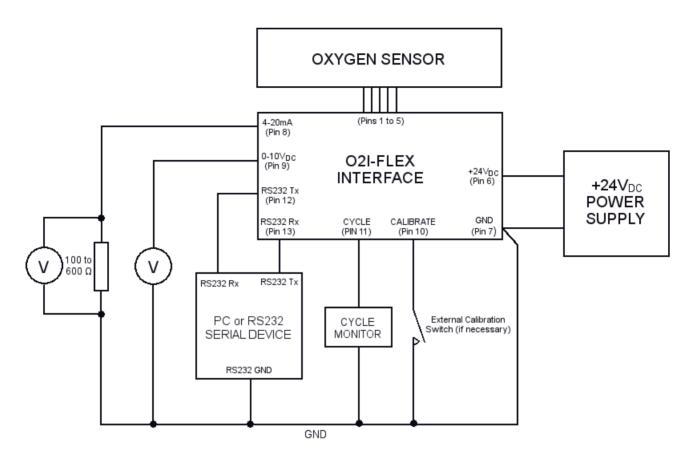
OUTLINE DRAWING AND MOUNTING INFORMATION

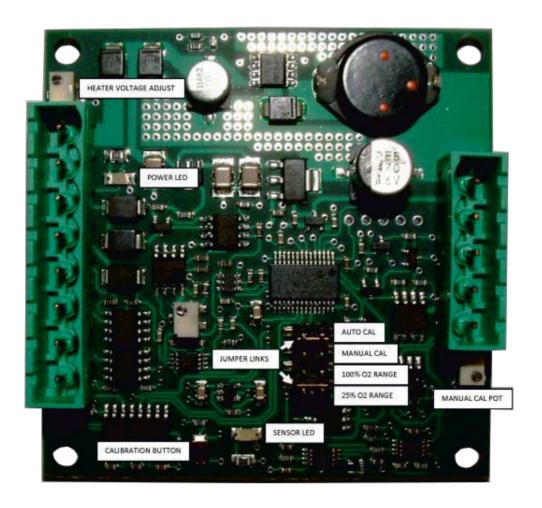
All dimensions shown in mm. Tolerances = ±1mm.


4 x M4 Mounting holes 60x60mm pitch

Electrical overview shown below, for full details refer to AN-0042 O2I-Flex Quick Start Guide.

Always handle the interface board using the correct ESD handling precautions.




Assignment
Sensor Heater GND (1)
Sensor Heater + (2)
Sensor Sense
Sensor Common
Sensor Pump
24V _{DC} ± 10%
GND
4—20mA Output
0—10V _{DC} Output
Calibrate
Cycle
RS232 Tx
RS232 Rx

Notes:

- 1. Output pins 8, 9, 12 and 13 are all references to the supply GND (pin 7). Due to high current flow in the supply GND, when monitoring the 0—10V_{DC} output (pin 9) it is recommended that a separate GND wire for the measurement system is taken from pin 7. This removes errors due to voltage drops in the power supply connections.
- 2. Output pins 1 through 5, refer to appropriate SST oxygen sensor datasheet for wiring/pin designations.
- 3. Every SST oxygen sensor has two heater connections which should be connected to pins 1 & 2 of the O2I-Flex; the heater coil has no polarity. However when connecting to a sensor where the sensor housing is one of the heater connections, pin 1 of the O2I-Flex should be connected to the housing.

Specify the part number listed below when ordering.

0 2 I - F L E X

RELATED PRODUCTS

Do not exceed maximum ratings and ensure sensor(s) are operated in accordance with their requirements.

Carefully follow all wiring instructions. Incorrect wiring can cause permanent damage to the device.

Zirconium dioxide sensors are damaged by the presence of silicone. Vapours (organic silicone compounds) from RTV rubbers and sealants are known to poison oxygen sensors and MUST be avoided. Do NOT use chemical cleaning agents.

Failure to comply with these instructions may result in product damage.

(1) INFORMATION

As customer applications are outside of SST Sensing Ltd.'s control, the information provided is given without legal responsibility. Customers should test under their own conditions to ensure that the equipment is suitable for their intended application.

For detailed information on the sensor operation refer to application note AN0043 Operating Principle and Construction of Zirconium Dioxide Oxygen Sensors.

General Note: SST Sensing Ltd. reserves the right to make changes to product specifications without notice or liability. All information is subject to SST Sensing Ltd.'s own data and considered accurate at time of going to print.

DS-0074 REV 13

© 2016 SST SENSING LTD.

